Используя замечательный предел вычислить - Первый и второй замечательный предел



Высшая математика — просто и доступно!

ПЕРВЫЙ ЗАМЕЧАТЕЛЬНЫЙ ПРЕДЕЛ

Если сайт упал, используйте ЗЕРКАЛО: Наш форум и библиотека: Не нашлось нужной задачи? Задайте вопрос на форуме! Высшая математика для чайников, или с чего начать?

Векторы для чайников Скалярное произведение векторов Линейная не зависимость векторов. Базис векторов Переход к новому базису Векторное и смешанное произведение векторов Формулы деления отрезка в данном отношении Прямая на плоскости Простейшие задачи с прямой на плоскости Линейные неравенства Как научиться решать задачи по аналитической геометрии? Эллипс Гипербола и парабола Задачи с линиями 2-го порядка Как привести уравнение л.

Полярные координаты Как построить линию в полярной системе координат? Уравнение плоскости Прямая в пространстве Задачи с прямой в пространстве Основные задачи на прямую и плоскость Треугольная пирамида. Множества и действия над ними Основы математической логики Формулы и законы логики Уравнения высшей математики Комплексные числа Выражения, уравнения и с-мы с комплексными числами Действия с матрицами Как вычислить определитель?

Свойства определителя и понижение его порядка Как найти обратную матрицу? Матричные выражения Матричные уравнения Как решить систему линейных уравнений?

Матричный метод решения системы Метод Гаусса для чайников Несовместные системы и системы с общим решением Как найти ранг матрицы?

Однородные системы линейных уравнений Метод Гаусса-Жордана Решение системы уравнений в различных базисах Линейные преобразования Собственные значения и собственные векторы. Примеры решений Замечательные пределы Методы решения пределов Бесконечно малые функции. Эквивалентности Правила Лопиталя Сложные пределы Пределы последовательностей Пределы по Коши.

Примеры решений Логарифмическая производная Производные неявной, параметрической функций Простейшие задачи с производной Производные высших порядков Что такое производная? Производная по определению Как найти уравнение нормали? Приближенные вычисления с помощью дифференциала Метод касательных. Графики и свойства элементарных функций Как построить график функции с помощью преобразований?

Непрерывность, точки разрыва Область определения функции Асимптоты графика функции Интервалы знакопостоянства Возрастание, убывание и экстремумы функции Выпуклость, вогнутость и точки перегиба графика Полное исследование функции и построение графика Наибольшее и наименьшее значения функции на отрезке Экстремальные задачи.

Область определения функции двух переменных. Линии уровня Основные поверхности Предел функции 2 переменных Повторные пределы Непрерывность функции 2п Частные производные Частные производные функции трёх переменных Производные сложных функций нескольких переменных Как проверить, удовлетворяет ли функция уравнению? Частные производные неявно заданной функции Производная по направлению и градиент функции Касательная плоскость и нормаль к поверхности в точке Экстремумы функций двух и трёх переменных Условные экстремумы Наибольшее и наименьшее значения функции в области Метод наименьших квадратов.

Примеры решений Метод замены переменной в неопределенном интеграле Интегрирование по частям Интегралы от тригонометрических функций Интегрирование дробей Интегралы от дробно-рациональных функций Интегрирование иррациональных функций Сложные интегралы Определенный интеграл Как вычислить площадь с помощью определенного интеграла? Теория для чайников Объем тела вращения Несобственные интегралы Эффективные методы решения определенных и несобственных интегралов S в полярных координатах S и V, если линия задана в параметрическом виде Длина дуги кривой S поверхности вращения Приближенные вычисления определенных интегралов Метод прямоугольников.

Дифференциальные уравнения первого порядка Однородные ДУ 1-го порядка ДУ, сводящиеся к однородным Линейные неоднородные дифференциальные уравнения первого порядка Дифференциальные уравнения в полных дифференциалах Уравнение Бернулли Дифференциальные уравнения с понижением порядка Однородные ДУ 2-го порядка Неоднородные ДУ 2-го порядка Линейные дифференциальные уравнения высших порядков Метод вариации произвольных постоянных Как решить систему дифференциальных уравнений Задачи с диффурами Методы Эйлера и Рунге-Кутты.

Ряды для чайников Как найти сумму ряда? Признаки Коши Знакочередующиеся ряды. Признак Лейбница Ряды повышенной сложности. Степенные ряды Разложение функций в степенные ряды Сумма степенного ряда Равномерная сходимость Другие функциональные ряды Приближенные вычисления с помощью рядов Вычисление интеграла разложением функции в ряд Как найти частное решение ДУ приближённо с помощью ряда? Вычисление пределов Ряды Фурье. Двойные интегралы Как вычислить двойной интеграл? Примеры решений Двойные интегралы в полярных координатах Как найти центр тяжести плоской фигуры?

Тройные интегралы Как вычислить произвольный тройной интеграл? Криволинейные интегралы Интеграл по замкнутому контуру Формула Грина.

Работа силы Поверхностные интегралы. Основы теории поля Поток векторного поля Дивергенция векторного поля Формула Гаусса-Остроградского Циркуляция векторного поля и формула Стокса. Примеры решений типовых задач комплексного анализа Как найти функцию комплексной переменной? Решение ДУ методом операционного исчисления Как решить систему ДУ операционным методом?

Основы теории вероятностей Задачи по комбинаторике Задачи на классическое определение вероятности Геометрическая вероятность Задачи на теоремы сложения и умножения вероятностей Зависимые события Формула полной вероятности и формулы Байеса Независимые испытания и формула Бернулли Локальная и интегральная теоремы Лапласа Статистическая вероятность Случайные величины.

Математическое ожидание Дисперсия дискретной случайной величины Функция распределения Геометрическое распределение Биномиальное распределение Распределение Пуассона Гипергеометрическое распределение вероятностей Непрерывная случайная величина, функции F x и f x Как вычислить математическое ожидание и дисперсию НСВ?

Равномерное распределение Показательное распределение Нормальное распределение. Если Вы заметили опечатку, пожалуйста, сообщите мне об этом. Заказать контрольную Часто задаваемые вопросы Гостевая книга. Авторские работы на заказ. По высшей математике и физике. Продолжаем наш разговор на тему Пределы и способы их решения. Перед изучением материалов данной страницы настоятельно рекомендую ознакомиться со статьей Пределы.

Из вышеуказанной статьи Вы сможете узнать, что же такое предел, и с чем его едят — это ОЧЕНЬ важно. Но вот если Вы не понимаете, что такое предел, то с решением практических заданий придется туго. Также не лишним будет ознакомиться с образцами оформления решений и моими рекомендациями по оформлению.

Вся информация изложена в простой и доступной форме. А для целей данного урока нам потребуются следующие методические материалы: Замечательные пределы и Тригонометрические формулы. Их можно найти на странице Математические формулы, таблицы и справочные материалы. Лучше всего методички распечатать — это значительно удобнее, к тому же к ним часто придется обращаться в оффлайне.

Чем же замечательны замечательные пределы? Замечательность данных пределов состоит в том, что они доказаны величайшими умами знаменитых математиков, и благодарным потомкам не приходится мучаться страшными пределами с нагромождением тригонометрических функций, логарифмов, степеней.

То есть при нахождении пределов мы будем пользоваться готовыми результатами, которые доказаны теоретически. Первый замечательный предел , Второй замечательный предел. Согласно нашему правилу нахождения пределов см.

Примеры решений пробуем подставить ноль в функцию: Таким образом, мы сталкиваемся с неопределенностью вида , которую, к счастью, раскрывать не нужно. В курсе математического анализа, доказывается, что:. Данный математический факт носит название Первого замечательного предела.

Аналитическое доказательство предела приводить не буду, а вот его геометрический смысл рассмотрим на уроке о бесконечно малых функциях. Но самостоятельно переставлять числитель и знаменатель нельзя! Если дан предел в виде , то и решать его нужно в таком же виде, ничего не переставляя.

Важно лишь, чтобы она стремилась к нулю. Здесь , , , , и всё гуд — первый замечательный предел применим. Кстати, вопрос на засыпку, а чему равен предел?

Ответ можно найти в конце урока. Если мы замечаем в пределе синус, то это нас сразу должно наталкивать на мысль о возможности применения первого замечательного предела. Сначала пробуем подставить 0 в выражение под знак предела делаем это мысленно или на черновике: Итак, у нас есть неопределенность вида , ее обязательно указываем в оформлении решения.

Выражение под знаком предела у нас похоже на первый замечательный предел, но это не совсем он, под синусом находится , а в знаменателе. В подобных случаях первый замечательный предел нам нужно организовать самостоятельно, используя искусственный прием. Ход рассуждений может быть таким: А делается это очень просто:.

Первый замечательный предел. Примеры решения.

То есть, знаменатель искусственно умножается в данном случае на 7 и делится на ту же семерку. Теперь запись у нас приняла знакомые очертания. Когда задание оформляется от руки, то первый замечательный предел желательно пометить простым карандашом:. По сути, обведенное выражение у нас превратилось в единицу и исчезло в произведении: Теперь только осталось избавиться от трехэтажности дроби: Кто позабыл упрощение многоэтажных дробей, пожалуйста, освежите материал в справочнике Горячие формулы школьного курса математики.

Опять мы видим в пределе дробь и синус. Пробуем подставить в числитель и знаменатель ноль: Примеры решений мы рассматривали правило, что когда у нас есть неопределенность , то нужно разложить числитель и знаменатель на множители.

Здесь — то же самое, степени мы представим в виде произведения множителей:. Далее, по уже знакомой схеме организовываем первые замечательные пределы. Под синусами у нас , значит, в числителе тоже нужно получить:. Аналогично предыдущему примеру, обводим карандашом замечательные пределы здесь их два , и указываем, что они стремятся к единице:.

В следующих примерах, я не буду заниматься художествами в Пэйнте, думаю, как правильно оформлять решение в тетради — Вам уже понятно. Получена неопределенность , которую нужно раскрывать. Косинус нуля равен единице, и от него легко избавиться не забываем пометить, что он стремится к единице:. Здесь все вышло проще, без всяких домножений и делений. Первый замечательный предел тоже превращается в единицу и исчезает в произведении:. Пределы с применением этой формулы почему-то встречаются очень часто.

Здесь у нас только один замечательный предел, который превращается в единицу и исчезает в произведении:. Некоторые пределы можно свести к 1-му замечательному пределу путём замены переменной, об этом можно прочитать чуть позже в статье Методы решения пределов. Важно лишь, чтобы она стремилась к бесконечности. Когда выражение под знаком предела находится в степени — это первый признак того, что нужно попытаться применить второй замечательный предел. Данная неопределенность как раз и раскрывается с помощью второго замечательного предела.

Но, как часто бывает, второй замечательный предел не лежит на блюдечке с голубой каемочкой, и его нужно искусственно организовать. Рассуждать можно следующим образом: Для этого возводим основание в степень , и, чтобы выражение не изменилось — возводим в степень:. Практически всё готово, страшная степень превратилась в симпатичную букву:.

При этом сам значок предела перемещаем в показатель: Предел подобного типа встречается очень часто, пожалуйста, очень внимательно изучите данный пример.

Первый и второй замечательный предел

В результате получена неопределенность. Но второй замечательный предел применим к неопределенности вида. Нужно преобразовать основание степени.

Поможет следующее ухищрение, делаем дробь трехэтажной:. Таким образом, основание приняло вид , и, более того, появилась нужная нам неопределенность. Организуем второй замечательный предел. Легко заметить, что в данном примере. Снова исполняем наш искусственный прием: Но на этом мучения не закончены, в показателе у нас появилась неопределенность вида , раскрывать такую неопределенность мы научились на уроке Пределы.

Делим числитель и знаменатель на:. А сейчас мы рассмотрим модификацию второго замечательного предела. Напомню, что второй замечательный предел выглядит следующим образом: Сначала мысленно или на черновике пробуем подставить ноль бесконечно малое число в выражение, стоящее под знаком предела:.

В результате получена знакомая неопределенность. Очевидно, что в данном примере. С помощью знакомого искусственного приема организуем в показателе степени конструкцию:. Еще не всё, в показателе у нас появилась неопределенность вида.

Раскладываем тангенс на синус и косинус ничего не напоминает? Косинус нуля стремится к единице не забываем помечать карандашом , поэтому он просто пропадает в произведении:. Как видите, в практических заданиях на вычисление пределов нередко требуется применять сразу несколько правил и приемов. Чтобы окончательно разобраться в пределах функций, и во 2-м замечательном пределе в частности, настоятельно рекомендую ознакомиться с третьим уроком — Методы решения пределов.

Ничего страшного, практически все приёмы решения 1-го замечательного предела работают и для остальных замечательных пределов, читайте 2-й параграф заключительной статьи Сложные пределы.

Да, так чему же равен предел? Как можно отблагодарить автора? Качественные работы без плагиата — Zaochnik. Копирование материалов сайта запрещено. Уравнение плоскости Прямая в пространстве Задачи с прямой в пространстве Основные задачи на прямую и плоскость Треугольная пирамида Элементы высшей алгебры: Однородные системы линейных уравнений Метод Гаусса-Жордана Решение системы уравнений в различных базисах Линейные преобразования Собственные значения и собственные векторы Пределы: Приближенные вычисления с помощью дифференциала Метод касательных Функции и графики: Непрерывность, точки разрыва Область определения функции Асимптоты графика функции Интервалы знакопостоянства Возрастание, убывание и экстремумы функции Выпуклость, вогнутость и точки перегиба графика Полное исследование функции и построение графика Наибольшее и наименьшее значения функции на отрезке Экстремальные задачи ФНП: Частные производные неявно заданной функции Производная по направлению и градиент функции Касательная плоскость и нормаль к поверхности в точке Экстремумы функций двух и трёх переменных Условные экстремумы Наибольшее и наименьшее значения функции в области Метод наименьших квадратов Интегралы: Дифференциальные уравнения первого порядка Однородные ДУ 1-го порядка ДУ, сводящиеся к однородным Линейные неоднородные дифференциальные уравнения первого порядка Дифференциальные уравнения в полных дифференциалах Уравнение Бернулли Дифференциальные уравнения с понижением порядка Однородные ДУ 2-го порядка Неоднородные ДУ 2-го порядка Линейные дифференциальные уравнения высших порядков Метод вариации произвольных постоянных Как решить систему дифференциальных уравнений Задачи с диффурами Методы Эйлера и Рунге-Кутты Числовые ряды: Признак Лейбница Ряды повышенной сложности Функциональные ряды: Примеры решений Кратные интегралы: Работа силы Поверхностные интегралы Элементы векторного анализа: Основы теории поля Поток векторного поля Дивергенция векторного поля Формула Гаусса-Остроградского Циркуляция векторного поля и формула Стокса Комплексный анализ: Подготовка к ЕГЭ По высшей математике и физике Помогут разобраться в теме, подготовиться к экзамену.

Другие новости по теме:

Яндекс без именичто делать
Генератор сварочный выпрямитель